
Honours Project Dissertation

Digital Music Information Retrieval for Computer
Games

Craig Jeffrey

University of Abertay Dundee

School of Arts, Media and Computer Games

BSc(Hons) Computer Games Technology

April 2016

Abstract

This project involves utilizing music information retrieval techniques to assist in

the content creation process for music video games. The project aim was to

explore how music information retrieval techniques could help content creators

by automatically providing timing information and transcribing note locations.

Tempo estimation is performed to automatically detect the beats-per-minute for

a piece of music while onset detection is performed to transcribe the locations of

notes. An application was developed which implements these two techniques in

addition to a simple rhythm game in order to evaluate the generated gameplay.

Objective evaluation of tempo estimation accuracy is performed through statistical

analysis. The gameplay generated by onset detection is evaluated subjectively

by playing the generated content and commenting on note placement. Results

produced by the music information retrieval system were concluded to be suitable

for use in assisting the content creation process. With further development, the

system could be improved and expanded to be more reliable and useful to content

creators.

Keywords: automatic music transcription, automatic content generation, game

content creation, music information retrieval, onset detection, tempo estimation,

BPM detection, beat detection, beat tracking.

i

Contents

Abstract . i

List of Figures . iv

List of Tables . iv

1 Introduction 1

1.1 Beatmaps . 1

1.2 Aims and Objectives . 3

2 Background and Literature Review 4

2.1 Music Information Retrieval . 4

2.1.1 Musical Features . 4

2.1.2 Audio Signal Analysis . 4

2.2 Onset Detection . 5

2.2.1 Onset Types . 6

2.2.2 Preprocessing . 8

2.2.3 Detection Functions . 9

2.2.4 Peak-Picking . 12

2.3 Tempo Estimation . 12

2.4 Existing Tools . 14

2.5 Research Conclusion . 15

3 Methodology 16

3.1 Beatmap Generation . 16

3.1.1 Setup . 16

3.1.2 Processing . 19

3.1.3 Tempo Estimation . 21

3.1.4 Onset Function Training . 23

3.1.5 Onset Function Filtering . 23

3.2 Filesystem . 25

3.2.1 Song List . 25

3.2.2 Beatmap List . 25

3.2.3 Beatmaps . 26

3.3 Application . 27

3.3.1 Menu State . 28

3.3.2 Game State . 29

3.4 Windows, Graphics, GUI and Audio Playback 30

3.5 Library Dependencies . 32

ii

4 Results and Discussion 33

4.1 Tempo Estimation . 33

4.1.1 Parameter Selection . 34

4.1.2 Aggregate Results . 37

4.1.3 Discussion . 38

4.2 Note Generation using Onset Detection 39

4.2.1 Objective Analysis and Parameter Selection 39

4.2.2 Evaluation Metrics . 41

4.2.3 Case Study: FELT - Flower Flag (MZC Echoes the Spring

Liquid Mix) . 42

4.2.4 Case Study: U1 overground - Dopamine 45

4.2.5 Discussion . 46

5 Conclusion 49

5.1 Future Work . 49

5.1.1 Application Features . 49

5.1.2 Content Generation . 50

Appendices 57

A Music Files and Beatmaps Used 57

iii

List of Figures

1 Overview of Beatmapping . 2

2 Time Domain Waveform and Frequency Domain FFT Window . . . 5

3 Single Onset . 5

4 Typical Onset Detector . 6

5 Instruments by Frequency . 7

6 MIREX 2015 Onset Detection Results F-Measure per Class 8

7 General Scheme of Tempo Estimation 12

8 Tempo Estimation based on Recurrent Neural Network and Resonating

Comb Filter . 14

9 Generation Settings Window . 17

10 Phase Vocoder . 20

11 Generating Window . 22

12 Butterworth Band Pass Filter . 24

13 File Structure . 26

14 RhythMIR Menu State . 28

15 RhythMIR Game State . 29

16 Game Settings Window . 30

17 Library Dependency Diagram . 32

18 Overlap 1 Anomaly . 34

19 Two Bars with 4 Beats in a Bar . 34

20 Histogram Peak Picking . 38

21 aubio Complex Mixture Onset Detection Results 40

22 MIREX 2006 aubio Complex Mixture Onset Detection Results . . . 41

List of Tables

1 Onset Detection Filters . 25

2 Game Settings . 31

3 Tempo Estimation Parameter Results 35

4 Tempo Estimation Parameter Results Continued 37

5 Tempo Estimation Results . 38

6 Flower Flag Onset Detection Results 42

7 Dopamine Onset Detection Results 45

iv

1 Introduction

Music is indisputably a core component of modern day video games; it can help

with immersion, setting the atmosphere or tone, and with emphasizing moments

of significance - to mention only a few situations. Masterful use of music can

elevate the experience of a game.

While important in most genres of video games, music video games are a genre of

games which base their gameplay on the players interaction with music. The

music video games genre covers many types of games with the most prominent of

them being rhythm games where the core gameplay challenges the player’s sense

of rhythm. Many typical rhythm games require the player to simulate a real

activity. A few notable games include Dance Dance Revolution (1998), where the

player dances along to the music on a four-key dance mat, Guitar Hero (2005),

where the player imitates playing guitar with a mock guitar controller, and

Beatmania (1997), where the player imitates being a DJ using a controller with

several keys and a turntable. There are also other rhythm games which are not

directly analogous to real activities where the specifics of how to play along with

the music is dependent on the game, e.g. osu! (2007), where the player aims and

clicks circles on a computer screen in time with the music, or Crypt of the

NecroDancer (2015), a roguelike dungeon crawler where the player’s moves must

match the beat of the music.

1.1 Beatmaps

In order to play along with the music in rhythm games, a file containing

gameplay data is required. There is no common file format for these gameplay

files; many games use different formats to suit their own needs, e.g. Beatmania’s

.bms format (Yane, 1998). For convenience this project will refer to these

gameplay files as Beatmaps - the term osu! uses. The process of creating

beatmaps is called Beatmapping (osu!wiki, 2016) and the person (or program)

doing so a Beatmapper. A beatmap describes the gameplay component for a

music track: it contains metadata about the music including beats-per-minute

(BPM), offset value of the first beat of the first bar (from the beginning of the

files sample data) and the position of all gameplay objects1 for the game.

Beatmapping is a two step process. Figure 1 illustrates an overview of the

beatmapping process.

1Gameplay objects refers to a rhythm game’s game-specific objects that are synchronized
with features of the music. Most rhythm games synchronize mainly with musical notes.

1

Music File
.wav, .mp3,

etc

Creative Mapping
Stage

Beatmapper places
gameplay objects to
describe features of

the music.

Technical Setup Stage

Timing Metadata
(BPM, Offset, etc)

Also Music Metadata
(Title, Artist, etc)

Beatmap File
.bms, .osu

Figure 1: Overview of Beatmapping

The first step includes a timing process to find out the BPM and offset value -

for several sections of the song if the tempo varies - so that gameplay objects

placed by the beatmapper are consistent with the beat of the music. The timing

process is time consuming and error prone, often requiring input from an

experienced beatmapper to ensure that beats are sufficiently accurate.

Inaccurate BPM leads to progressively worsening desychnronization between the

music and gameplay objects whereas inaccurate offset leads to gameplay objects

being consistently out of sync with the music.

The second step is the creative process of placing gameplay objects to describe

features of the music. These objects do not necessarily correspond to notes on a

musical score; where objects can be placed is often ambiguous and subjective to

the person listening to the music. Beatmappers often have their own style of

placing objects to describe the music, with the degree of creative freedom being

limited only by the diversity allowed by each individual game’s core mechanics.

This project proposes using Music Information Retrieval (MIR) techniques which

involve automatically analysing music files to extract information to assist in the

beatmapping process and content creation for other music video games by:

• Timing music, thereby providing suggested BPM and offset values and

potentially lowering the experience required to begin beatmapping.

• Transcribing music features to help facilitate synchronization of game

elements, e.g. gameplay objects, with music features, e.g. notes or beats.

Several games that automatically generate gameplay by analysing music files

already exist such as Audiosurf (2008) where the player rides a three-lane track

of the music collecting blocks in sync with the music. Additional examples of

games exhibiting gameplay based on music features are Beat Hazard (2011) and

Soundodger+ (2013).

2

1.2 Aims and Objectives

To assist in defining the project goal a research question is posed:

How can Music Information Retrieval (MIR) techniques be

used to aid in content creation for music video games?

The project aims to develop a Music Information Retrieval system and a rhythm

game to explore and evaluate the creation of gameplay using MIR techniques.

To achieve this aim, the project seeks to accomplish several objectives:

1. Research and implement MIR techniques to generate timing metadata and

locate music features for arbitrary input music files.

2. Explore using the retrieved information for game content creation.

3. Evaluate the implemented MIR system, its application for content creation

in music video games, and the resulting gameplay generated using the

system.

3

2 Background and Literature Review

2.1 Music Information Retrieval

Music Information Retrieval (MIR) is a multifaceted field covering a number of

sub-fields relating to retrieving information from music. One sub-field of MIR -

Automatic Music Transcription (AMT) - can be described as the process of

converting audio into a symbolic notation. This project will use onset detection

to locate musical features and tempo estimation to determine the BPM of a piece

of music. Both of these techniques rely on analysing an audio signal waveform.

2.1.1 Musical Features

This project uses the term ”music feature” to describe the elements of music that

are being timed and categorized for synchronization with elements of a game.

The rationale for using this term is that it can be used as an umbrella term to

describe several types of events present in a piece of music. Huron (2001)

describes a feature as ”a notable or characteristic part of something: a feature is

something that helps to distinguish one thing from another”. Using this

definition, anything from entire sections of a song to a particular note could be

considered a music feature. For this projects purposes only very specific features,

i.e. features that can be localised to a specific point in time, are being referred to

when mentioning music features. This mainly includes:

• Musical Notes - defined as a pitched sound.

• Musical Beats - defined as the basic unit of time for a piece of music.

2.1.2 Audio Signal Analysis

Audio files are typically stored as a finite number of samples in the time domain.

When analysing audio signals it is often the case that analysing the time domain

signal is only occasionally useful as the time domain only contains information

about the amplitude of a signal (Bello et al., 2005). Many MIR techniques

examine the signal in the frequency domain where the spectral content of a music

signal can be analysed. Spectral content refers to the collection of frequencies

present in a signal contributing to its frequency spectrum. To obtain a frequency

domain signal from a time domain signal, the Short-Time Fourier Transform

(STFT) is typically used (Bello et al., 2005; Dixon, 2006). The STFT uses a

sliding-frame Fast Fourier Transform (FFT) at discrete points in time to produce

a signal as a 2D matrix of frequency vs time. Essentially, an FFT produces a

frequency window at a single point in time whereas the STFT adds a time

4

dimension. Figure 2 shows a signal’s time domain and frequency domain

representations for a single point in time (FFT window).

Figure 2: Time Domain Waveform and Frequency Domain FFT Window

Each line in the FFT window is referred to as a frequency bin. Frequency bins

are discrete ranges on the frequency spectrum whereas a spectral envelope is a

continuous curve in the frequency-amplitude plane which goes through each bin’s

peak, visually outlining the spectrum. The orange outline shows a potential

spectral envelope.

2.2 Onset Detection

Figure 3: Single Onset (Bello et al., 2005)

To find note locations, onset

detection will be performed. Onset

detection involves attempting to

locate onsets present in a music signal.

Bello et al. (2005) define an onset as

the single instant chosen to mark the

beginning of a note transient, where

the transient is defined as a short

interval in which the signal evolves in

a non-trivial or unpredictable manner.

Note that attack of a transient is not

always a short sudden burst and may

be a lengthy soft build up. Figure 3

illustrates an example of an onset with

the signal waveform on the top and an

annotated diagram of the onset on the

bottom.

5

Onset detection is a multi-stage process. The first stage is to optionally

pre-process the signal to increase the performance of later stages. The next stage

of onset detection is reduction of the audio signal using a detection function to

emphasize points of potential onsets in the signal and then finally peak-picking

to obtain individual onset timings. Figure 4 shows the process of a typical onset

detector.

Figure 4: Typical Onset Detector

2.2.1 Onset Types

Bello et al. (2005), Dixon (2006) and Brossier (2007) distinguish between four

onset types when evaluating detection functions. These are: pitched percussive

(PP), e.g. piano or guitar; non-pitched percussive (NPP), e.g. drums; pitched

non-percussive (PNP), e.g. violin and complex mixture (CM), e.g. a pop song.

Onset types are distinguished because notes played on different instruments have

different spectral envelopes which signify their presence in an audio signal. Most

music used in games are likely to be complex mixtures where many types of

onsets are present in the same signal. Bello et al. (2005) mentions that audio

signals are additive and several sounds superimpose each other rather than

concealing. Perfect onset detection is therefore incredibly difficult as many

instruments have overlapping frequency ranges. Figure 5 shows these ranges for

many instruments.

6

Figure 5: Instruments by Frequency (Carter, 2003)

Further classification can be done by introducing music texture, which can be

briefly defined as the way in which melodic, harmonic and rhythmic materials are

combined in a piece of music. This project distinguishes between monophonic

texture - where a piece has a single melodic line with no accompaniment, e.g.

most solo instruments - and polyphonic music texture - where a piece has more

than a single melodic line, e.g. multiple independent melodies, accompaniment or

any other variations which are not monophonic.

MIREX (2016) provides benchmarks for many MIR tasks in the form of a yearly

competition. When looking at Onset Detection Results per Class from MIREX

(2015a) it is clear that some types of onsets are more difficult to analyse than

others. MIREX categorizes audio files into 4 classes:

• Solo drums (NPP)

• Solo monophonic pitched including 6 sub-classes:

– Brass (PNP)

– Winds (PNP)

– Sustained strings (PNP)

7

– Plucked strings (PP)

– Bars and bells (PP)

– Singing voice (PNP)

• Solo polyphonic pitched - Mostly PP as this covers instruments that can

produce multiple simultaneous melodies such as piano, harpsicord and

electric keyboard, however this could potentially include polyphonic PNP

instruments as well.

• Complex mixtures (CM)

Figure 6: Onset Detection Results F-Measure per Class (MIREX, 2015a)

Figure 6 shows F-Measure2 per Class onset detection results for MIREX 2015. In

general it appears that PNP onset types - including singing, wind instruments

and sustained strings - are the most difficult to analyse - even more so than

complex mixtures. The second worst results appears to be, as expected, complex

mixtures where many onset types are present. Percussive signals have overall

better detection results. This is likely due to percussive instruments usually

producing sharp attacks and short transients whereas non-percussive instruments

generally produce soft and potentially lengthy transients. For these instruments,

onsets may not be localized accurately to a specific point in time even if correctly

detected.

2.2.2 Preprocessing

Preprocessing may be done in order to achieve specific results - such as detecting

particular onset types - or to simply improve the results of onset detection. Bello

et al. (2005) discusses several scenarios where others have split a signal into

2F-Measure is a method of determining accuracy using precision and recall where precision is
a measure of relevant detected onsets and recall is a measure of relevant onsets that are detected.

8

multiple frequency sub-bands using filter banks. Splitting a signal into sub-bands

implicitly categorizes onsets into frequency ranges and may be useful for game

content generation if a game is looking to synchronize with particular

instruments or frequency bands.

2.2.3 Detection Functions

Detection functions are the core component of an onset detector, they are used

to process an input signal into a form where peaks of the signal waveform

indicate onsets. Many detection functions exist with different strength and

weaknesses depending on the signal type. A summary of the functions reviewed

in literature in addition to the strengths and weaknesses of each one is given

below. ”+” denotes a strength whereas ”–” denotes a weakness. Implementation

details are kept brief as the specifics vary between individual implementations.

The implementations used by this project will be discussed in the methodology

section later.

1. Time Domain Magnitude (a.k.a Attack Envelope or Energy Based)

A simple early method of onset detection discussed by Marsi (1996) which

involves following the amplitude of the input audio signal.

+ Computationally fast as the function operates in the time domain thus no

STFTs have to be performed.

+ Accurate at time localization of onsets due to processing being performed on

individual samples instead of STFT windows.

+ Can be effective on monophonic signals or signals where the amplitude

indicates onsets clearly, i.e. solo percussive. (Bello et al., 2005)

– Limited usefulness because of only analysing time domain of a signal.

Ineffective on polyphonic music where signal amplitude is not enough

information to reliably locate onsets. (Bello et al., 2005)

2. High Frequency Content (HFC)

A magnitude-based frequency domain function proposed by Marsi (1996) which

involves detecting changes in the frequency spectrum between STFT windows.

Frequency bin magnitudes are multiplied proportional to their frequency (hence

the name, since higher frequency bins are factored more) and added together.

+ Good performance detecting percussive signals since they are generally

indicated by broadband bursts across the frequency spectrum which are

emphasized by this function. (Bello et al., 2005; Brossier, 2007)

9

+ Can work reasonably well on complex mixtures when percussion is present.

(Bello et al., 2005; Brossier, 2007)

– Poor performance on non-percussive signals and onsets with relatively little

energy. (Bello et al., 2005; Brossier, 2007)

3. Spectral Difference (a.k.a. Spectral Flux)

Also described by Marsi (1996), this function involves measuring the change in

magnitude of each frequency bin between STFT windows. Positive differences

are summed and onsets are indicated by large differences (Dixon, 2006). Bello et

al. (2005) mentions that Foote’s (2000) method can be an alternative way of

implementing a spectral difference function using self-similarity matrices. Two

variations of the spectral flux function introduced by Böck, Krebs, and Schedl

(2012) and Böck and Widmer (2013a) are among the current best performing

detection functions. These are labelled as BK7 and SB4 respectively (Böck et al.,

2015) on the MIREX 2015 Onset Detection Results in Figure 6 above.

+ Appears to perform reasonably on all types of signals. (Bello et al., 2005;

Dixon, 2006; MIREX, 2015a)

+ Bello et al. (2005) recommends this function as a good choice in general.

4. Phase Deviation

So far functions have only used magnitude information. Since for non-changing

signals the phase distribution is expected to be near constant (Bello et al., 2004),

onsets can be detected by comparing the change of phase in each frequency bin

between STFT windows. Dixon (2006) improved the phase deviation function by

weighting the phase deviation values of each frequency bin by their

corresponding magnitude to eliminate unwanted noise from components with no

significant contribution.

+ Good performance for pitched signals. (Bello et al., 2004, 2005; Dixon, 2006)

– Poor performance on non-pitched signals. (Bello et al., 2004, 2005; Dixon,

2006)

– Poorer performance on complex mixtures than other functions. (Bello et al.,

2004, 2005) In Dixon’s (2006) improved results performance was only

marginally worse than Spectral Flux and Complex Domain on complex

mixtures.

5. Complex Domain

The complex domain function combines amplitude and phase information

between STFT windows by comparing the amplitude and rate of phase change

10

using a distance measurement (Dixon, 2006). This function could potentially be

considered a combination of spectral difference and phase deviation. A variation

of the complex domain function introduced by Böck and Widmer (2013b) is

among the best performing results for MIREX 2015. It is labelled as SB5 in

Figure 6 above. (Böck et al., 2015)

+ Reasonable performance on all signal types. (Bello et al., 2004; Dixon, 2006)

– Slightly under-performs other functions on their specialised onset types.

(Dixon, 2006; Brossier, 2007)

– In the results of Bello et al. (2004) the complex domain function outperforms

spectral flux but in all more recent results the opposite is true in almost every

situation.

– Slightly more computationally expensive than the other algorithms. (Bello et

al., 2004)

6. Recurrent Neural Network

The current state-of-the-art performing onset detection function (MIREX,

2015a) is an artificial intelligence (AI) trained to recognize the locations of onsets

using a neural network. The two best performing functions at MIREX (2015a)

were an offline, non-real-time implementation (Eyben, Böck and Schuller, 2010)

and an online real-time implementation (Böck et al., 2012) of this function

respectively labelled SB2 and SB3 on Figure 6. (Böck et al., 2015)

+ Good performance on all types of music since the neural network learns where

onsets typically occur from training data. (Eyben, Böck and Schuller, 2010).

+ Performs on par with or better than all of the above functions. (Eyben, Böck

and Schuller, 2010; Böck et al., 2012; MIREX, 2015a)

– The function must be trained using a data set. This is time consuming and

requires a data set appropriate for the type of music that it is planned for the

function to be used on.

This is not an exhaustive list and other functions such as a statistical probability

function covered by Bello et al. (2005) can also be effective. The functions listed

are in chronological order of their introduction to the covered literature,

including the most common functions and the function that can be considered

state-of-the-art. Results can potentially be improved by combining functions

such as the dual HFC x Complex method discussed by Brossier (2007) which was

shown to have superior results in many cases to single functions.

11

2.2.4 Peak-Picking

After the detection function has reduced a signal, peak-picking is done to obtain

individual onsets. Optional post-processing can be done to improve peak picking

such as using a smoothing function to reduce noise (Bello et al., 2005).

Thresholding is performed to determine a cut-off point for picking onsets.

Peak-picking is then finalised by recording every peak above the threshold.

2.3 Tempo Estimation

Tempo estimation is the process of attempting to extract the tempo of a piece of

music. Tempo is defined as the speed of a piece of music and is measured in

beats per minute (BPM). A large number of approaches exist that achieve tempo

estimation through varying methods. Zapata and Gómez (2011) evaluate a large

number of tempo estimation methods. Figure 7 shows an illustration of the

general scheme of tempo estimation methods with block descriptions below.

Figure 7: General Scheme of Tempo Estimation (Zapata and Gómez, 2011)

• Feature List Creation

Transformation of the audio waveform into features such as onsets.

• Pulse Induction

Use of the feature list to estimate tempo.

• Pulse/Beat Tracking

Locates position of beats, potentially using already detected features (beat

tracking is essentially specialized onset detection). Similar to feature list stage

except beats are more relevant than features for tempo estimation.

• Back-end

Uses beat positions to estimate tempo or selects strongest tempo from current

candidates.

Some methods don’t include the third and fourth blocks as they simply use

onsets or other features rather than performing beat tracking to estimate tempo.

12

Evaluation of tempo estimation methods is much simpler than onset detection

functions as the tempo is either correct or not. Note, however, that there can be

multiple ”correct” tempos for a piece as multiples of the true tempo have beats

occurring concurrently, e.g. a song of 200BPM will have beats occurring at the

same time interval twice as often as a song of 100BPM.

Given that there are many tempo estimation methods but only one evaluation

criteria it is not worth reviewing a large number of tempo estimation methods.

Their applicability to different types of music is deferrable to the onset detection

or beat tracking functions that they are based on rather than their methodology

of obtaining tempo from these features.

The current state-of-the-art tempo estimation method according to MIREX

(2015b) Audio Tempo Extraction results developed by Böck, Krebs and Widmer

(2015) is based on a neural network to determine which frames are beats and

then a resonating comb filter bank to process beats and obtain tempo estimates

which are then recorded on a histogram. The highest peak on the histogram is

then selected as the tempo estimate when processing is completed. Figure 8

illustrates the process of this function visually.

(a) Input Audio Signal

(b) Neural Network Input

13

(c) Neural Network Output

(d) Resonating Comb Filter Bank Output

(e) Histogram of Tempo Estimates

Figure 8: Tempo Estimation based on Recurrent Neural Network and Resonating Comb
Filter (Böck, Krebs and Widmer, 2015)

2.4 Existing Tools

The project ”Dancing Monkeys” by O’Keeffe (2003) generates step files (i.e.

beatmaps) for Dance Dance Revolution (1998) using an independently developed

implementation of Arentz’ (2001) beat extraction algorithm to calculate BPM

and a self-similarity matrix, as described by Foote (1999), to place the same

generated step patterns in similar parts of a song. O’Keeffe was able to

accurately determine BPM within ±0.1 of the correct BPM for a constrained set

of input music. This accuracy was achieved by making assumptions about the

input music - namely that it should have consistently occurring beats (i.e.

computer generated) and a single tempo. O’Keeffe notes that the gameplay

generated by the computer lacks originality, mentioning that official Dance

Dance Revolution step files often break some rules to make gameplay interesting.

In his evaluation, O’Keeffe also mentions that the structural analysis performed

14

to place note patterns is not objectively ”correct” or even optimal as that is not

what is attempted. What matters more is that the output is reasonable and

generates agreeable gameplay.

2.5 Research Conclusion

Benetos et al. (2012) provides an insightful overview of the state of automatic

music transcription, mentioning that the methods available at the time converge

towards a level of performance not satisfactory for all uses. The most important

takeaway is the notion that better results can generally be achieved by providing

more input information about a music piece, e.g. the genre of the music or

instruments used, so that the most effective methods and parameters can be

used. Several important points and ideas can be summarized from research

findings which will guide development of the project’s MIR system:

• Many onset detection functions exist that excel at detecting different onset

types, i.e. notes played by different instruments. This can be taken

advantage of by using functions suited to particular music signal types.

However more recent methods such as the neural network function are

more universal in their effectiveness (Eyben, F., Böck, S., Schuller, B.,

2010), i.e. they are simply better than their predecessors if their usage

conditions are met.

• To automatically categorise onsets by their frequency, onset detection can

be performed on frequency sub-bands of a piece of music.

• In conjunction with using a function suited to a particular type of onset,

categorising onsets by their frequency may be useful to attempt onset

detection for particular instruments. For example, to discover onsets for

notes played on different piano keys, using a detection function suited to

pitched percussive onsets on the frequency bands associated with each key

could be attempted.

15

3 Methodology

This section provides an overview of completed practical work including details

of the developed system for beatmap generation and rhythm game to be used for

exploring the application of Music Information Retrieval to games. The

application developed - dubbed RhythMIR - includes several features to enable

the exploration of creating gameplay using onset detection and tempo

estimation. In order to evaluate creating gameplay effectively, three main

systems were developed for RhythMIR. These are: the beatmap generator

including tempo estimation and onset detection, for generating gameplay files;

the rhythm game, for testing gameplay created using generated beatmaps; the

filesystem, for saving and loading beatmaps so that generation does not need to

be repeated for every play session.

3.1 Beatmap Generation

When beginning application development, the decision to use a third party

library for MIR tasks was made. Doing this allowed for more freedom in

exploring gameplay creation by using several methods of onset detection rather

than individually implementing a single method. The library that was chosen to

perform MIR tasks is aubio (2015). This is because it is written in C and proved

easy to integrate into a C++ application while providing many facilities

including the choice of several onset detection functions.

To begin beatmap generation there must be at least one song available in

RhythMIR to use as the source. The beatmap must be given a name then the

generation process can be started. The generation process produces different

output depending on a number of settings shown in the Generation Settings

Window in Figure 9. Settings are explained throughout this section.

3.1.1 Setup

At the beginning of the beatmap generation process, a new std::thread is

started to begin processing the audio file. Processing is executed on a separate

thread so that the application does not block while processing. An

aubio source t object is created to load in the audio samples from the source

audio file. The source object takes two parameters, the song sample rate and the

hop size. Sample rate is the amount of samples per second in an audio signal

measured in hertz (Hz). Hop size is the amount of samples to advance every

frame of processing. The amount of time, in seconds, for each hop can be

16

Figure 9: Generation Settings Window

calculated as t = hopsize
samplerate

. Smaller hop sizes increase the time resolution of

onset detection (and beat tracking for tempo estimation), allowing onsets to be

distinguished closer together. Lower hop size therefore means more detections at

the cost of more computation time.

After the source object has been set up, the aubio tempo t and aubio onset t

objects are set up depending on the selected Generate Mode (Figure 9) which

will produce one of three beatmap types. The beatmap types are:

Single Beatmap with a single note queue.

Four Key Beatmap with four note queues.

Visualization Beatmap not intended for playing, containing any number of

note queues.

The three generation modes are:

Single Function A single onset object is set up using a single onset detection

function, which will produce a single queue of onsets. Generated beatmap

type is Single.

Single Function with Filtering 1, 4 or 8 onset objects are set up each using

identical onset detection functions. Produces 1, 4 or 8 queues of onsets.

Generated beatmap type is Single, Four Key or Visualization

depending on number of bands selected.

17

Run All Functions 8 onset objects are set up - one for each onset function.

Produces 8 queues of onsets. Generated beatmap type is Visualization.

The aubio tempo t object takes four parameters to set up: the name of the

onset detection function to use for beat tracking (only option is default), the Fast

Fourier Transform (FFT) window size in sample count, hop size in sample count

and the signal sample rate in Hz. The onset detection function used for beat

tracking is an implementation of the spectral flux onset function described by

Dixon (2006), discussed above in the Detection Functions section (2.2.3).

Similarly, the aubio onset t object takes the same four parameters except the

first parameter has a number of options for different onset detection functions.

An overview of function strengths and weaknesses shown by others is discussed

above in the Detection Functions section (2.2.3) for all functions except KL and

MKL. The available onset detection functions include:

Energy Calculates local energy on the input spectral frame, similar to the Time

Domain Magnitude function discussed before but using magnitude across

frequency spectra instead of in the time domain.

High Frequency Content (HFC) Linearly weights the magnitude of

frequency bins across the FFT window, emphasizing broadband noise

bursts as onsets. Based on the HFC function in Marsi’s thesis (1996).

Complex Domain (CD) A complex domain function implemented using the

euclidean (straight line) distance function to emphasize large differences in

both magnitude and phase between FFT windows as onsets. Based on the

Duxbury et al. (2003) paper.

Phase Deviation (PD) A phase based function which emphasizes instability

of the phase of the audio signal in each frequency bin as tonal onsets.

Implementation based on the Bello and Sandler (2003) paper.

Spectral Difference (SD) A spectral difference function which emphasizes the

difference in spectral magnitudes across FFT windows as onsets.

Implementation based on the Foote and Uchihashi (2001) paper.

Spectral Flux (SF) A spectral flux function similar to the SD function above.

Implementation based on the Dixon (2006) paper.

Kullback-Liebler (KL) A type of complex domain function using a

logarithmic distance function, ignoring decreases in the spectral magnitude.

18

Due to the logarithmic nature of the function, large differences in energy

are emphasized while small ones are inhibited. Based on a paper by

Hainsworth and Macleod (2003).

Modifier Kullback-Liebler (MKL) A variation of the KL function described

by Brossier (2007) which removes weighting of the current frames outside of

the distance calculation, accentuating magnitude changes more.

The strengths and weaknesses of each function in addition to their applicability

for gameplay generation will be discussed in the results section.

In addition to the above mandatory setup, four additional parameters are used

to control the behaviour of onset detection. These are briefly explained below:

• Peak-picking Threshold - changes the cutoff threshold for labelling

onsets on the reduced signal, higher threshold causes less onsets.

• Minimum Inter-Onset-Interval - changes the minimum amount of time

(in ms) between when onsets can be detected.

• Silence Threshold - changes the relative loudness threshold (in dB) for

determining silence.

• Delay Threshold - amount of time (in ms) to subtract from detected

onsets to fix delay caused by phase vocoding (phase vocoding is explained

in the processing section).

3.1.2 Processing

After setup is complete, the processing of the audio file begins. Hop size number

of samples are read by the source object into a source buffer each loop iteration

until processing is cancelled or there is not enough samples remaining to perform

another hop. Listing 1 shows pseudo-code for the processing stage.

Listing 1: Processing Stage Pseudocode

1 while not canceling generation and frames were read last loop

2 aubio_source_do - read from source to source buffer

3 aubio_tempo_do on source buffer

4 if a beat was found

5 add the estimated BPM to BPMs vector

6 add the beat to the beats vector

7 if storing beats in beatmap (Figure 9)

8 add the beat to the beatmap beats vector

9 if not using filters

10 for all onset objects

19

11 aubio_onset_do on source buffer

12 if an onset was found

13 add it to the note beatmaps vector

14 else we are using filters

15 filter from source buffer into filter buffers

16 for all onset objects

17 aubio_onset_do on filter buffers

18 if an onset was found

19 add it to the note beatmaps vector

Both tempo estimation and onset detection methods (aubio tempo do and

aubio onset do) use a phase vocoder to obtain FFT windows the size of their

FFT window size parameter for analysing the frequency spectrum (spectral

content) of the audio signal (see Audio Signal Analysis (2.1.2)). The process

happens every frame, illustrated in Figure 10.

Figure 10: Phase Vocoder with Overlap of 4 (Dudas and Lippe, 2006)

The FFT window size must be higher than the hop size so that no samples are

missed. The combination of hop size and window size affects the results of the

next stages. An amount of overlap of the FFT windows can be defined as

overlap = windowsize
hopsize

. Overlap can be described as the number of FFT windows

that each sample will be processed by, excluding the first few hops as seen in

Figure 10. Hop size and window size must be powers of 2 so the most commonly

20

used overlap values are 2 and 4. Overlap of 1 is not ideal as the produced FFT

windows don’t form a complete description of the frequency domain. This is

because FFT windows are usually tapered at the boundaries due to the use of a

windowing function to reduce spectral leakage. A major problem with phase

vocoding is the issue of resolution. Lower hop size increases time resolution while

higher window size increases frequency resolution at the cost of ”blurring”

transients together, making time localization of onsets more difficult. Brossier

(2007) uses overlap of 2 and 4 - or 50% and 75%, convertible to percentage using

overlap% = 1 − 100
overlap

- when evaluating the onset detection functions

implemented in aubio.

An aubio specdesc t object (short for spectral descriptor, encapsulates an

onset detection function) is then used to reduce the signal using the detection

function selected in the setup stage. Peak picking is performed on the reduced

signal using a dynamic threshold based on weighting the median and the mean

calculated from a window around the current frame around the user selected

threshold to label onsets (Brossier 2007). The minimum time lag between onsets

is equal to whichever is greater between hop size and the minimum inter onset

interval. At this point, onset detection is completed as peaks identified as onsets

are then appended to the beatmap note queues.

3.1.3 Tempo Estimation

Tempo estimation continues by performing beat tracking. Beat tracking uses an

autocorrelation function (ACF) to identify beats from onsets by measuring the

lag between onsets within a 6 second window. A bank of comb filter is then used

to filter the ACF results into tempo candidates. The filter with the most energy

corresponds to the lag of the ACF function - which is inversely related to the

tempo such that the beats-per-minute (BPM) can be calculated as

BPM = 60 · lagms. The slower the BPM, the less probability it is given. The

ACF is also biased towards longer lags, thus preferring slower BPM. These

conditions result in estimates around a particular BPM being preferred - this

value starts at 120BPM and changes as processing continues.

When approximately the same BPM has been detected three consecutive beats

in a row, the algorithm enters a context-dependent mode where it considers

previous beats to refine predictions of future beats. This allows smaller changes

to be made to future beat predictions and BPM estimates. Confidence in the

estimated BPM increases as more consecutive candidates are found to be similar.

The algorithm simultaneously continues the initial mode of estimation so that if

21

a candidate differs greatly from the context-dependent mode, it can attempt to

re-evaluate the continuity of BPMs more generally as it did in the beginning.

The advantage of this two-mode system is that it can make small changes using

the context-dependent mode while allowing for abrupt large changes using the

initial mode.

This is a simplified description of the tempo estimation system implemented by

aubio, described in full by Brossier (2007). The beat tracking and comb filter

bank stages are visually similar to Figure 8c and 8d respectively.

In order to assist with selecting the correct tempo and offset value, a generating

window is displayed while processing. Figure 11 shows this window.

Figure 11: Generating Window

The generating window includes a timeline and a histogram of all BPM

estimates. The timeline shows all estimates from the beginning of the song (left)

to the current time (right). Below the timeline is a histogram of BPMs sorted

22

into 200 bins ranging from 40BPM to 240BPM. Values for the timeline and

histogram are viewable by hovering with the mouse cursor (not shown). Bins

with more estimates will peak higher therefore suggesting that bins BPM as an

estimate. The histogram can be zoomed using the sliders below it, increasing the

resolution of bins. The resolution of each bin is max−min
200

which makes the default

resolution without zooming 240−40
200

= 1BPM . An option to use the highest

confidence BPM selected by aubio is given as it is not necessarily equal to one of

the BPMs suggested by histogram peaks.

In addition to picking the BPM, the offset of the first theoretical beat, B0 must

be picked. B0 is ”theoretical” as it need not correspond to a beat present in the

music, it simply signifies when beats can start being placed using a beat interval,

B∆t. An option to auto-select the offset is available. This option will search the

beats vector to find the beat with the closest BPM to the selected BPM, calculate

the beat interval B∆t = 60
BPM

then calculate the timing of the first beat, B0, by

iteratively subtracting B∆t until B0 < 0 then finally adding B∆t so that B0 > 0.

It is important to note that this method of tempo estimation is only viable for

songs that have a single tempo throughout. Variable tempo estimation requires

structural segmentation of the music into sections where the tempo differs, which

is not performed by the current method. An experienced user may be able to

pick out tempos for several sections using the BPM timeline and histogram but

no facility was created for adding several tempo sections to beatmaps.

3.1.4 Onset Function Training

When performing onset detection on songs that are not silent at the beginning,

the onset detection functions do not have any previous FFT window data to

compare with. This causes greatly increased sensitivity to detection in the

beginning of the song, usually producing a large number of false detections. To

combat this an option to train onset functions for a number of hops is provided.

This processes the specified number of hops (default 200) but does not record the

output for detections. After training is completed, the source buffer is reset back

to the beginning of the song to begin processing normally with trained onset

functions.

3.1.5 Onset Function Filtering

One of the available generation modes for beatmap generation developed uses

filters to split the source buffer up into multiple filter buffers with filtered signals

23

for onset detection. This was done to detect onsets in different frequency ranges

to explore the hypotheses of using filtering as a basic form of instrument

separation and note categorization. Non-filtered mode is disadvantaged by the

fact that it cannot detect notes occurring simultaneously whereas filtered mode

can theoretically pick up as many simultaneous notes as there are filters - if

instruments were separated perfectly. Games may also want to synchronize with

notes within a particular frequency range, e.g. bass notes.

Initially, filtering was attempted using the an aubio filterbank t object but

this object reduces FFT windows to a single energy value for each filter rather

than sub-bands of the signal.

Figure 12: Butterworth Band Pass Filter

Instead of using this

object, the library DSPFilters (2012)

was added to access signal filtering

functionality. All filters used are 2nd

order Butterworth filters. This filter

type was selected empirically using

DSPFilters accompanying executable

to find a filter type which could be

used to separate a signal into several

bands without a significant amount

of overlap while minimizing the loss of

content between neighbouring bands.

Figure 12 shows an example 2nd order Butterworth band pass filter.

Currently there are 1-band, 4-band and 8-band filtering modes implemented.

1-band mode uses a single band pass filter where the centre frequency and width

are user selected using two slider bars which appear on the generation settings

window. In other modes, the first filter buffer contains the audio signal processed

using a low pass filter while the last buffer contains the signal processed using a

high pass filter. All of the buffers in between contain signals processed using

band pass filters. The centre frequency and band width for each filter was

empirically picked from the bands shown in Figure 5. Table 1 shows the

parameters for each filter in both 4-band and 8-band modes.

For the 4-band mode, the bands correspond roughly to bass notes, low mid notes,

upper mid notes and high notes. For 8-band mode, the bands correspond roughly

to sub-bass, bass, upper bass, low mid, mid, upper mid, high notes and ultra

high notes. The parameters for these modes were picked to be flexible and

24

Band Type Frequency Width

1 Low Pass 300Hz

2 Band Pass 500Hz 600Hz

3 Band Pass 1600Hz 1600Hz

4 High Pass 5000Hz

Band Type Frequency Width

1 Low Pass 42Hz

2 Band Pass 100Hz 120Hz

3 Band Pass 230Hz 140Hz

4 Band Pass 500Hz 600Hz

5 Band Pass 1650Hz 1700Hz

6 Band Pass 3750Hz 3500Hz

7 Band Pass 7500Hz 5000Hz

8 High Pass 10000Hz

Table 1: Onset Detection Filters

categorize notes broadly instead of attempting to pick out individual instruments

from the frequency spectrum, so that the idea could be tested generically.

3.2 Filesystem

A filesystem was developed to enable storing beatmaps and songs used by

RhythMIR between sessions. All files produced by RhythMIR are XML

documents and have the extension ”.RhythMIR”. Boost filesystem (2016) is used

to create directories, rename files and to move files to their directories while

RapidXML (2009) is used to parse XML files when loading and saving to disk.

Figure 13 shows the file structure for RhythMIR.

3.2.1 Song List

RhythMIR keeps track of songs using a song list file ” songs.RhythMIR” stored

in the /songs/ directory. Since the directories that songs are stored in are based

on the song artist and title, the song list only needs to store the artist, title and

source for each song. The song list file structure is shown in Listing 2.

Listing 2: Song List File Format

1 <?xml version="1.0" encoding="utf-8"?>

2 <songlist>

3 <song artist="artist" title="title" source="source.wav"/>

4 ... more songs

5 </songlist>

3.2.2 Beatmap List

Each songs directory has a beatmap list file ” beatmaps.RhythMIR” in their

directory which lists the names of all beatmaps for the song.

25

RhythMIR
Root

/songs/

RhythMIR.exe
_settings
.RhythMIR

_songs
.RhythMIR

/songs/artist -
title/

_beatmaps
.RhythMIR

data files…
(images,
sounds,

font)

beatmap 1
.RhythMIR

beatmap …n
.RhythMIR

source
.wav

/songs/artist -
title/

/songs/artist -
title/

/songs/artist -
title/

/songs/artist -
title/

Figure 13: File Structure

Listing 3: Beatmap List File Format

1 <?xml version="1.0" encoding="utf-8"?>

2 <beatmaplist>

3 <beatmap name="beatmap name"/>

4 ... more beatmaps

5 </beatmaplist>

3.2.3 Beatmaps

Each song can have any number of uniquely named beatmaps each stored in the

file format in Listing 4.

26

Listing 4: Beatmap File Format

1 <?xml version="1.0" encoding="utf-8"?>

2 <beatmap artist="foo" title="bar" source="song.wav" type="4">

3 <description>a description of foobar</description>

4 <beats>

5 <beat offset="1240"/>

6 ... more beats

7 </beats>

8 <section BPM="200.000000" offset="20">

9 <notequeue>

10 <note offset="3118"/>

11 ... more notes

12 </notequeue>

13 ... more notequeues

14 </section>

15 ... more sections

16 </beatmap>

Each beatmap can have any number of section nodes which correspond to timing

sections with different BPMs within a song. Every beatmap currently produced

only has one section as only single tempo songs are used. Each section has a

number of note queue nodes which each stores a vector of onsets produced by

beatmap generation as note nodes, e.g. a Four Key map will have four note

queues. Optionally, if beats are being stored, a beats node will be present storing

a number of beat nodes. The offset element for section, beat and note nodes

indicates when a section, beat or node occurs within a song in milliseconds.

Beatmaps are only partially loaded - only the artist, title, beatmap type and

description - in the menu state to avoid unnecessary performance overhead when

navigating beatmaps. Beatmaps are then fully loaded when transitioning from

the menu state to the play state.

3.3 Application

RhythMIR has two states which implement the three major systems:

• Menu State implementing beatmap generation and the filesystem.

• Game State implementing the rhythm game.

27

3.3.1 Menu State

Figure 14: RhythMIR Menu State

Figure 14 shows an overview of the menu state.

Song/Beatmap Lists — Shown on the left in Figure 14. Displays available

songs and their beatmaps. A selector shows what song or beatmap is

currently selected. Navigating is done using WASD or the arrow keys. The

selector moves between the song list and beatmap list.

Song UI — Outlined in orange on Figure 14, this UI contains buttons for

adding and removing songs from RhythMIR. Every song must have an

artist, a title and a source music file (only .wav files are supported for

beatmap generation).

Beatmap UI — Outlined in purple on Figure 14, this UI contains buttons for

generating new beatmaps, deleting beatmaps and opening the generation

settings window. Each beatmap must be given a unique name and can

optionally be given a description.

Play UI — Outlined in yellow on Figure 14, this UI shows the currently loaded

beatmap, details about the beatmap, a button for changing to the play

state and a button for opening the game settings window.

Console Window — Shown at the top of Figure 14. The console provides

feedback for many actions in addition to notifying the user of any warnings

or errors encountered. Pressing F10 toggles hiding the console.

28

In addition to what is displayed in Figure 14 above, there are three additional

GUI windows for other purposes including the Generation Settings Window

and the Generating Window covered in the Beatmap Generation section

(3.1)). The third window is the game settings window with a number of widgets

for changing the behaviour of the game.

3.3.2 Game State

The game state implements the rhythm game, developed in order to evaluate

creating gameplay using MIR methods. The gameplay changes depending on

what type of beatmap is being played and the selected game settings.

Figure 15: RhythMIR Game State Zoomed In

Figure 15 shows a four key beatmap being played. The game was designed

similar to the classic arcade game Dance Dance Revolution (1998) with four

lanes for notes to move along towards ”receptors” or hit indicators which

indicate when the player should hit a note. The game was designed this way as it

is simple to implement while being similar to an existing rhythm game - which is

important as the project aims to aid in content generation for existing games. If

enabled, beat bars will also spawn based on the music BPM and offset and move

towards the receptor area. Beat bars are not interactive but are useful to judge

empirically if BPM and offset are correct. Single beatmap types can use the

Shuffle (Table 2) setting to play as Four Key types.

Several performance statistics were implemented to assist in evaluating

beatmaps, shown at the left in Figure 15. Perfect counts hits within ±30ms from

29

the exact note offset, Great counts hits within ±60ms and Good counts hits

within ±120ms. Attempts within ±300ms which do not fall in the other counters

or where the circle goes off-screen are misses. Measures for the earliest hit, latest

hit, average offset and standard deviation of notes hit are also calculated. These

were implemented to help judge if notes in beatmaps are consistently well timed,

which can be done empirically using the average hit offset and deviation.

Figure 16 shows the game settings window, with all available game settings

described in Table 2 on the next page. Game settings modified from their

defaults are saved to and loaded from the ” settings.RhythMIR” file between

visits to the menu state.

Figure 16: Game Settings Window

3.4 Windows, Graphics, GUI and Audio Playback

SFML (2015) was chosen for handling windows, events, 2D graphics and audio

playback due to the previously developed extension library being available and

ease of use. All resources used (textures, sound effects, music) in the project are

loaded using SFML and cached in the global resource managers using their file

names as keys until they are cleaned up either on exiting the current state that

uses them or the application. The sf::Font class is used to load in the font used -

NovaMono.ttf.

For creating GUI widgets, dear imgui (2016) was an obvious choice due to the

ease of programming and the flexibility of control it gives. Adding new widgets

such as buttons is simple, as shown by the example in Listing 5.

30

Setting Description

Shuffle Randomizes the path that each note spawns in.

Autoplay Disables the note hit keybinds. The computer hits notes
automatically when they reach the receptors.

Flip Flips the play field, causing notes to spawn at the bottom
and move towards receptors at the top.

Play Offset Adjusts the offset that all notes are spawned at. Useful for
testing beatmap timing (by playing the same map with
different offsets) and fixing beatmaps that are off time
without having to regenerate. Does not affect beats.

Approach Time Changes the speed of notes/beats, measured in the
amount of time to reach receptors after spawning.

Countdown Time Amount of time at the beginning of playing to countdown
before playing. Must be at least equal to approach time
to allow the first notes to spawn.

Beat Type Changes how beats are spawned. Available options are
hidden, where no beats are shows, interpolated, where
beat timings are calculated using the BPM and offset
value of the song, and generated, where beats stored in
the beatmap are used.

Hitsound Changes the sound played when notes are successfully hit.
Available options are none, soft and deep.

Music Volume Changes the music volume.

SFX Volume Changes the volume of all sound effects (hitsound and
combobreak sound).

Progress Bar Position Changes where the in-game progress bar is. Available
options are top right, along top and along bottom.

Table 2: Game Settings

Listing 5: Code for Button to open the Game Settings Window

1 if (ImGui::Button("Game Settings"))

2 display_settings_window_ = !display_settings_window_;

When the button is pressed, it simply flips a boolean which then causes code

elsewhere to toggle between rendering and not rendering the game settings

window. dear imgui provides many functions for changing the layout of widgets

such as ImGui::SameLine which places the next widget on the same line as the

previous widget. The whole GUI is generated and sent for rendering every frame

however, since the total number of vertices produced is low, the performance

overhead is trivial.

31

3.5 Library Dependencies

A large number of software libraries were used to develop the systems in

RhythMIR. Figure 17 shows an overview of dependencies. Briefly, these are:

Agnostic A personal C++ library implementing a number of utility classes and

functions, e.g. the state machine and logger.

aubio (2015) A C library that provides the low level Music Information Retrieval

functionality for the project encapsulated into several objects.

Boost (2016) A set of C++ libraries, RhythMIR uses the boost::filesystem

library for manipulating directories and file paths.

dear imgui (2016) A C++ Immediate Mode Graphics User Interface (IMGUI)

library used for creating all of the GUI widgets and windows in RhythMIR.

DSPFilters (2012) A C++ library of classes implementing a number of Digital

Signal Processing (DSP) filters for manipulating audio signals.

RapidXML (2009) A C++ XML parser used for saving and loading the song list,

beatmaps, beatmap lists and game settings.

SFML (2015) A C++ multimedia library used for main window management,

user input, graphics rendering and audio playback.

SFML Extensions A personal C++ library of extensions to SFML including a

rendering back-end for dear imgui.

Windows, Graphics(Rendering + GUI) & Audio Playback

Agnostic dear
imgui

SFML
Extensions

RhythMIR

SFML

Filesystem

Rapid
XML

Boost
(filesystem)

Beatmap Generation

aubio
(source,
tempo,
onset)

DSP
Filters

Render
Output

User
Input

Figure 17: Library Dependency Diagram

32

4 Results and Discussion

• All music files were converted to .wav format with a samplerate of 44100Hz.

• All music files are complex mixtures across several genres of music since games

generally include music of this type. The main genres included are Dance,

Electronic and Rock since these are among the most common in rhythm

games. A full list of all the songs used is available in Appendix A.

• Hop Size is the amount of samples or time to advance every frame of

processing. Lower increases the time resolution of processing at the cost of

increased computation time. The following hop sizes were available for testing:

16(< 0ms) 32(< 0ms) 64(1ms) 128(2ms)
256(5ms) 512(11ms) 1024(23ms) 2048(46ms)

• Window Size is the length of the FFT window used for obtaining frequency

data, in samples. Higher increases the resolution of frequency data at the cost

of increased computation time. The available window sizes is based on the

selected hop size and available overlap values.

• Overlap is the amount of overlap between FFT windows. Overlap is

calculated as overlap = Windowsize
Hopsize

. Overlap of 2, 4 and 8 were made available

for tests. Overlap of 1 caused anomalous results during testing (example

shown in Figure 18). Overlap of higher than 8 caused a significant increase in

computation time. Based on overlap, the following window sizes were made

available for testing:

Hopsize× 2(0 − 92ms) Hopsize× 4(1 − 185ms) Hopsize× 8(2 − 371ms)

4.1 Tempo Estimation

In order to evaluate the tempo estimation method, a selection of songs with

known BPM and offset were collected. All songs used were obtained from and

have beatmaps available on osu! (2007). This was done because these songs have

already been through a timing process done by the beatmappers that created the

beatmaps thus they have accurate BPM and offset values available.

To be considered useful for rhythm games (the strictest genre accuracy-wise) the

generated BPM accuracy should be ±0.1 of the reference value and offset of the

first beat should be within ±10ms of the reference value. Note that the reference

offset will be the first beat in a song rather than the first beat of the first bar.

This is because the developed system does not distinguish between beat types in

33

Figure 18: Overlap 1 Anomaly - Tempo estimation method failing to find reasonable
continuity between beats

a bar. A beatmapper could easily increase the offset after generation by the beat

interval to obtain the first beat in the first bar. Figure 19 shows 2 bars for music

with 4 beats in a bar, labelling the beat types.

Time

Downbeat
On-beat
Off-beat

Bar 1 Bar 2

Beat
Interval

Figure 19: Two Bars with 4 Beats in a Bar

The amount of beats in a bar is defined by a time signature, e.g. 4
4
, where the

upper number is the number of beats in a bar and the lower number is the note

value for beats. The time signature is a high level concept used by musicians to

define the relative duration of notes and beats. The tempo estimation method

does not understand the structure of music - including time signatures or musical

bars - it simply produces an estimate based on beats picked from onsets present

in the music. Since the tempo estimation method prefers values around a

particular BPM (default 120BPM), songs with a real BPM that greatly deviates

from this value will have to be factored up or down to fix the detected BPM to

the correct time signature. This will be done manually for the results below.

4.1.1 Parameter Selection

Firstly, the most effective set of parameters for the algorithm must be found. A

small part of the data set put together was tested using different hop sizes (HS)

34

and window sizes (WS). Table 3 shows these results for two songs.

Song1

HS/WS
BPM β β̌ ∆ Λ Λ̌ ∆ Offsetms αms ∆ms

Odyssey2

16 / 32 175 116.73 175.10 +0.10 116.73 175.10 +0.10 256ms 335 +79
16 / 64 175 87.54 175.08 +0.08 116.74 175.11 +0.11 256ms 416 +160
16 / 128 175 87.59 175.18 +0.18 116.74 175.11 +0.11 256ms 453 +197

32 / 64 175 87.56 175.12 +0.12 116.83 175.25 +0.25 256ms 438 +182
32 / 128 175 87.56 175.12 +0.12 116.82 175.23 +0.23 256ms 439 +183
32 / 256 175 87.56 175.12 +0.12 116.82 175.23 +0.23 256ms 440 +184

64 / 128 175 87.62 175.24 +0.24 116.94 175.41 +0.41 256ms 623 +367
64 / 256 175 87.62 175.24 +0.24 116.93 175.40 +0.40 256ms 624 +368
64 / 512 175 87.61 175.22 +0.22 116.91 175.37 +0.37 256ms 610 +354

Cry
Thunder3

16 / 32 130 130.19 130.19 +0.19 130.03 130.03 +0.03 388ms 190 -198
16 / 64 130 130.17 130.17 +0.17 130.03 130.03 +0.03 388ms 160 -228
16 / 128 130 130.91 130.91 +0.91 130.16 130.16 +0.16 388ms 29 -359

32 / 64 130 130.16 130.16 +0.16 130.06 130.06 +0.06 388ms 312 -76
32 / 128 130 130.15 130.15 +0.15 130.34 130.34 +0.34 388ms 310 -78
32 / 256 130 130.25 130.25 +0.25 128.79 128.79 -0.21 388ms 322 -66

64 / 128 130 130.41 130.41 +0.41 130.57 130.57 +0.57 388ms 402 +14
64 / 256 130 130.35 130.35 +0.35 130.52 130.52 +0.52 388ms 336 -52
64 / 512 130 130.32 175.22 +0.22 130.42 130.42 +0.42 388ms 304 -84

Table 3: Tempo Estimation Parameter Results
β denotes the auto-selected BPM.
β̌ denotes the BPM rectified to the correct time signature.
Λ denotes the BPM selected using the histogram.
Λ̌ denotes the BPM selected using the histogram rectified to the correct time signature.
∆ denotes the difference between the reference BPM and detected BPM.

1Song details are available in Appendix A
2Akira Complex - Odyssey (Au5 Remix)
3Dragonforce - Cry Thunder

Table 3 has three highlighted columns which are the auto selected BPM, the

BPM selected empirically using the implemented histogram and the auto selected

offset. In all of these columns, values closer to 0 are better. A number of

observations can be made based on the results shown in addition to what was

learned while noting results:

• Lower hop size produced a more accurate result in both songs.

• At 16 and 32 hop size, overlap of 4 can be clearly seen to be the most

accurate. At 64 hop size, higher overlap can be seen to increase accuracy.

However this is irrelevant as the lower hop sizes produced better results.

35

• The histogram often displayed high peaks at several BPMs hinting that

confidence in the automatically selected BPM is low or the time signature

is wrong. However the best way to verify correct time signature is to check

empirically by playing the beatmap rather than using the histogram.

• The method of offset detection appears to be fundamentally flawed. This

can potentially be explained as being due to an erroneous assumption when

designing the offset selection. The aubio beat tracker selects beats from any

onsets detected in the music at constant intervals, the implication of this is

that what the beat tracker labels as a beat is not necessarily aligned with

one of the beats in a bar. Detected beats could have been labelled from

onsets at any point in a bar which can’t be assumed to be one of the whole

beats in a bar. The accuracy of offset detection would appear to be better

if the beat interval used to iterate back to the first beat were subdivided

allowing iteration back in smaller intervals (1/2 beats, 1/3 beats, 1/4 beats,

etc.) but this would require knowing the time signature of the music in

advance so that whole beats could be subdivided using the correct factor.

Given these problems, further testing of the offset selection method was

abandoned.

Table 4 on the next page shows results for more songs. Further testing only

includes results for hop size of 16 and 32 both with overlap of 4.

From the results in Table 4 it can be concluded that the preferred parameters for

tempo estimation are hop size 16 and window size 64. Except for Epiphany, the

most accurate BPM for each song was generated using these preferred

parameters. With a bit of knowledge of how the system operates, the BPMs

picked from the histogram proved more accurate than the auto selected BPM.

On several occasions there was no clearly defined histogram peak as shown in

Figure 20. In such cases, or when several peaks were very close, the furthest left

(lowest BPM) peak was chosen. The far left peak was not chosen in Figure 20 as

it was not reasonable to assume it as a better candidate than the marked one,

since it is noticeably shorter. In all cases where there is no obvious peak, picking

the highest far left peak gave the best results.

Figure 20: Histogram Peak Picking

36

Song1

HS/WS
BPM β β̌ ∆ Λ Λ̌ ∆

Odyssey2

16 / 64 175 87.54 175.08 +0.08 116.74 175.11 +0.11
32 / 128 175 87.56 175.12 +0.12 116.82 175.23 +0.23

Cry Thunder3

16 / 64 130 130.17 130.17 +0.17 130.03 130.03 +0.03
32 / 128 130 130.15 130.15 +0.15 130.34 130.34 +0.34

AugoEidEs4

16 / 64 207 103.68 207.36 +0.36 103.57 207.14 +0.14
32 / 128 207 103.26 206.52 -0.48 103.62 207.24 +0.24

Flower Flag5

16 / 64 170 113.37 170.06 +0.06 113.42 170.13 +0.13
32 / 128 170 113.45 170.18 +0.18 113.56 170.34 +0.34

Genryuu Kaiko6

16 / 64 173 173.15 173.15 +0.15 115.39 173.09 +0.09
32 / 128 173 115.46 173.19 +0.19 115.5 173.25 +0.25

Everlasting Message7

16 / 64 230 115.06 230.12 +0.12 115.10 230.20 +0.20
32 / 128 230 115.14 230.28 +0.28 115.18 230.36 +0.36

Epiphany8

16 / 64 175 87.66 175.32 +0.32 87.54 175.08 +0.08
32 / 128 175 87.52 175.04 +0.04 116.80 175.20 +0.20

Dopamine9

16 / 64 200 100.04 200.08 +0.08 100.05 200.10 +0.10
32 / 128 200 100.09 200.18 +0.18 100.09 200.18 +0.18

Average
16 / 64 +0.1675 +0.11
32 / 128 +0.2025 +0.2675

Table 4: Tempo Estimation Parameter Results
β denotes the auto-selected BPM.
β̌ denotes the BPM rectified to the correct time signature.
Λ denotes the BPM selected using the histogram.
Λ̌ denotes the BPM selected using the histogram rectified to the correct time signature.
∆ denotes the difference between the reference BPM and detected BPM.

1Song details are available in Appendix A
2Akira Complex - Odyssey (Au5 Remix)
3Dragonforce - Cry Thunder
4DystopiaGround - AugoEidEs
5FELT - Flower Flag (MZC Echos the Spring Liquid Mix)
6Halozy - Genryuu Kaiko
7penoreri - Everlasting Message
8TwoThirds & Feint - Epiphany (feat. Veela)
9U1 overground - Dopamine

In several cases the auto selected BPM picked a more accurate BPM at some

point throughout generation before then changing to a less accurate BPM while

the histogram could be used to pick a more accurate BPM. This is because the

auto selected BPM is selected from the longest chain of similar beat predictions,

37

which is not necessarily consistent with the most frequent tempo estimate.

4.1.2 Aggregate Results

The settled hop size and window size are 16 and 64 respectively. Table 5 shows

results for many songs using these parameters. The %∆ column is introduced as

it is suspected that results could be scaled by a percentage to increase overall

accuracy. Only the most accurate result for each song is shown with yellow cells

showing results picked from the histogram rather than auto-selected. Cells that

had to be rectified by 1.5× are highlighted red and by 2× cyan.

Song BPM β β̌ ∆ %∆

Akira Complex - Odyssey (Au5 Remix) 175 87.54 175.08 +0.08 +0.04

Camellia - δ:for the DELTA 174 116.05 174.08 +0.08 +0.04

Camellia & DJ Genki - Feelin Sky 174 87.07 174.14 +0.14 +0.08

Dragonforce - Cry Thunder 130 130.03 130.03 +0.03 +0.02

DystopiaGround - AugoEidEs 207 103.57 207.14 +0.14 +0.06

FELT - Flower Flag (MZC Echos the Spring Liquid Mix) 170 113.37 170.06 +0.06 +0.04

Halozy - Genryuu Kaiko 173 115.39 173.09 +0.09 +0.05

penoreri - Everlasting Message 230 115.06 230.12 +0.12 +0.05

TwoThirds & Feint - Epiphany (feat. Veela) 175 87.54 175.08 +0.08 +0.05

U1 overground - Dopamine 200 100.04 200.08 +0.08 +0.04

UNDEAD CORPORATION - Everything will freeze 240 120.09 240.18 +0.18 +0.08

USAO - Chrono Diver -PENDULUMs- 184 92.03 184.06 +0.06 +0.03

xi - Blue Zenith 200 100.04 200.08 +0.08 +0.04

xi - FREEDOM DiVE 222 111.16 222.32 +0.32 +0.14

Average +0.11 +0.054

Table 5: Tempo Estimation Results
β denotes the selected BPM.
β̌ denotes the BPM rectified to the correct time signature.
∆ denotes the difference between the reference BPM and detected BPM.

4.1.3 Discussion

• The average rectified BPM error is +0.054%. The average accuracy of

detected BPMs can be immediately improved by offsetting detected values

by this percentage.

• Out of 14 songs, 9 of the best results were picked automatically.

• Only 1 song did not require the detected BPM to be rectified before

calculating BPM difference. As expected this songs BPM is close to the

methods preferred BPM of 120.

• 9 songs had to be rectified by doubling their detected BPM.

• 4 songs had to be rectified by multiplying their detected BPM by 1.5.

38

With 9 out of 14 songs within ±0.1 of their reference BPM, the overall accuracy

of detected BPMs is considered high enough to be used directly for rhythm

games. Several of the other results would also be within ±0.1 after adjusting for

the average % error. Given the amount of BPM rectifications done, it would be

prudent to add a feature to the application which automatically displays several

factors of the detected BPM as possible BPMs. Unfortunately, the method of

offset selection was implemented näıvely due to the assuming that beats

produced by the aubio tempo object could be used to estimate a first beat offset

and produced unexpectedly poor results, rendering it essentially useless.

4.2 Note Generation using Onset Detection

Unlike Tempo Estimation, the results from Onset Detection cannot be directly

compared with reference beatmaps from other games. This is because onset

detection is used to perform the subjective task of generating notes to describe

music rather than its original purpose of finding the location of all notes present

in an audio signal. The reference beatmaps have notes annotated in each

beatmappers individual style to describe the music the way they perceive it.

However, a large amount of notes placed by beatmappers correspond to onsets

present in the music as this creates gameplay that appeals to a large audience.

Objectively correct onsets are generally considered well placed as they are less

likely to be interpreted differently by different players.

Evaluation of onset detection and resulting gameplay will be two-fold. An

objective analysis of onset detection functions will be performed to ascertain the

best parameters for normal onset detection. Following this, case studies will be

done for several songs. For each song, several beatmaps will be created using

RhythMIR and subjectively evaluated. Each case study will involve beatmaps

created from both single and 4-band filter mode, as these types are playable.

4.2.1 Objective Analysis and Parameter Selection

In addition to hop size, window size and resulting overlap, onset detection has 4

additional parameters. These are Peak-picking Threshold (PPT), Minimum

Inter-Onset-Interval (Min-IOI), Silence Threshold and Delay Threshold. The

version of aubio used implements 8 functions (parameters and functions

described in Beatmap Generation Setup section (3.1.1)):

Energy High Frequency Content (HFC)

Phase Deviation (PD) Spectral Difference (SD)

Complex Domain (CD) Kullback-Liebler (KL)

Modified Kullback-Liebler (MKL) Spectral Flux (SF)

39

The objective accuracy of onset detection can be evaluated by comparing results

directly with the source musical score of the song or annotations hand labelled

objectively - as opposed to creatively or expressively as done in game beatmaps.

For the songs used, the source musical scores are not available and individually

annotating them would be unreliable, since this process is normally done by

several experts and cross referenced. Fortunately, aubio has results noted by

Brossier (2007), MIREX 2005 and MIREX 2006 for most of its onset detection

functions. Since the large majority of music is expected to be complex mixtures

(many onset types), only the results for complex mixtures are considered.

Figure 21: aubio Complex Mixture Onset Detection Results (Brossier 2007)

Figure 21 shows the F-Measure vs PPT for all functions except SF. The Energy

function is instantly discarded due to its lack of consideration of the frequency

content in a signal, resulting in poor results for complex mixtures. For all

functions except MKL, a PPT of 0.2-0.3 appears to be optimal. The optimal

PPT for MKL appears to be approximately 0.1. Spectral flux is similar in nature

to spectral difference so its optimal PPT will be assumed to be similar at 0.2.

Figure 22 shows the table of MIREX 2006 results - with total, merged onsets and

doubled onsets columns removed as they are not directly relevant. The dual

function is also removed as it is not available for use.

Parameters is the PPT used for the function, the best performing PPTs are

selected automatically. The precision column notes the amount of relevant onsets

detected divided by total detections. The recall column notes the amount of

40

Figure 22: MIREX 2006 aubio Complex Mixture Onset Detection Results

relevant onsets detected divided by the total amount that should have been

returned.

• CD returns the most reliable results, showing the highest precision value,

but returns less of the total relevant onsets from the music.

• HFC appears to perform superior to the complex function, returning far

more relevant onsets with only slightly less precision.

• SD appears to be inferior to CD and HFC.

Hop size implicitly defines the time interval between onsets being detectable,

since only 1 onset can be labelled per hop. Higher window sizes increases the

resolution of frequency content but reduces the accuracy of time localization. A

balance between hop size low enough to distinguish onsets and window size high

enough for good frequency resolution, while keeping time resolution reasonable,

is therefore desirable.

Brossier (2007) examines results from MIREX 2005 and shows that a hop size of

128 (2ms time resolution) and window size of 512 (11ms time resolution, 43Hz

frequency resolution) using a delay threshold of 4×Hopsize gave the best results

for detecting onsets correctly and labelling them accurately for all functions.

All functions will therefore begin testing using these parameters. Attempts will

be made to improve the output for each function until it is deemed that the

function is ineffective or it is decided that reasonably optimal results are found.

4.2.2 Evaluation Metrics

Beatmaps are considered good if a large number of the onsets are subjectively

agreeable with what is present in the music and the onsets can be considered

reasonably well timed. In order to evaluate beatmaps concisely, four subjective

metrics are defined:

Fidelity: How agreeable the notes generated are in the context of the

music. Good fidelity means the majority of notes are relevant to the music.

41

Density: How many notes are present in the music relative to what was

expected. Good density means few sections with unexpectedly high or low

amounts of notes.

Detail: How finely detailed the notes placed describe the music. High

detail means several notes were placed on what would be considered minor

details. Note that Detail becomes irrelevant when Fidelity or Density is

poor because it is difficult to determine the level of Detail described when

there is not a reasonable number of relevant notes. As such, when Fidelity

or Density is poor, Detail is not recorded.

Precision: How accurately notes are placed relative to where they were

expected in time. High precision means the notes were positioned closer to

where they were expected in time.

In addition to using these metrics, specific comments will be made for each

function.

4.2.3 Case Study: FELT - Flower Flag (MZC Echoes the Spring

Liquid Mix)

Flower flag is a relatively calm song with a consistent bassline, vocals and

varying accompaniments. This song was chosen as the first case study as it is an

example of the type of song that beatmap generation is expected to work well on.

Table 6 shows the evaluated metrics for the song using all functions.

Function Fidelity Density Detail Precision

Single Function
HFC Very Good Good Very High High
PD Poor Very Poor n/a Low
SD Poor Poor n/a Low
CD Good Average High High
KL Good Good High High

MKL Average Good Average High
SF Very Good Good High Low

4-Band Filtered
HFC Very Poor Good n/a Very Low
PD n/a n/a n/a n/a
SD n/a n/a n/a n/a
CD Good Good High Low
KL Average Good High Low

MKL n/a n/a n/a n/a
SF Very Poor Poor n/a Very Low

Table 6: Flower Flag Onset Detection Results

42

HFC: Tested with 0.2 and 0.3 PPT with varying results.

+ Many finer details of the music were annotated when using 0.2 PPT and

excluded when using 0.3 PPT. This suggests that 0.2 PPT could be used

to produce harder difficulty beatmaps.

– Notes were noticeably off-time for one short section of the music.

– A few double detections were present. However, increasing the Min-IOI

would easily remove these.

Phase Deviation: Tested with 0.1, 0.2 and 0.3 PPT and then 64 hop size

and 256 window size with 0.2 PPT. Variation of parameters did not

meaningfully change results.

+ At a few short sections the function placed notes particularly well. These

sections contained a particular instrument producing pitched

non-percussive sounds.

– For the majority of the song generated gameplay was very poor.

Spectral Difference: Tested 0.3 and 0.5 PPT with 0.5 producing better

results.

– Notes were often noticeably out of time.

– Generated notes were sometimes agreeable but overall the results were

very inconsistent.

Complex Domain: Tested with 0.2 and 0.3 PPT with varying results.

+ Similar to HFC, finer details were unveiled when putting the PPT down

to 0.2 rather than 0.3.

– A substantial number of notes were slightly out of time.

Kullback Liebler: Tested with 0.3 and 0.5 PPT with 0.5 producing better

results.

+ Overall note placement is good. Good amount of notes, consistently in

time and agreeable.

– A few short bursts of far too many notes were present. Changing to 0.5

PPT minimized these bursts without compromising quality elsewhere.

Modified Kullback Liebler: Tested with 0.1 and 0.2 PPT with 0.1

producing better results.

– Notes were placed less reliably than the other Complex Domain functions

(CD & KL).

43

Spectral Flux: Tested with 0.3 and 0.6 and 0.7 PPT with 0.6 producing the

best results.

+ Often placed notes in places that other functions missed. Produces more

notes overall than other functions. As such, the PPT was increased to

reduce note count to a reasonable level.

± A number of notes were placed in arguably subjective locations, i.e. many

people may disagree with them.

– Quite a lot of double detections present. Increasing Min-IOI could

potentially remove them.

– A substantial number of notes were noticeably out of time.

4-Band Filtered Functions: For functions where beatmaps could be

successfully generated, 4-Band mode functions produced similar gameplay.

The only large variation is the Spectral Flux function which produced more

notes than the others. Testing 4-Band mode for functions required each

functions PPT to be increased dramatically to reduce the overall amount of

notes generated. A default PPT of 0.8 was selected as the initial hypotheses

for 4-Band functions. PPTs that produced the best results were:

HFC 0.8 CD 0.6 KL 1.0 SF 1.2.

– A large number of double/triple detections occur in all 4-Band beatmaps

therefore the use of Min-IOI when creating 4-Band beatmaps is vital. A

reasonable way to determine a good Min-IOI is to calculate the amount of

time for a 1/4 notes based off of the songs BPM, e.g. for Flower Flag:

Min-IOIms =
60 · 1000

170BPM · 4
= 88ms

– The accuracy of 4-Band mode proved to be very low across the board.

– Many of the functions proved unsuitable for use with filtering as no

reasonable beatmaps could be produced. These functions are marked

with n/a on Table 6.

All single mode functions will be evaluated a second time in the next case study.

Most functions will be excluded from future 4-Band results as they are believed

to be ineffective, only CD and KL will be continued forward. While intelligible

Four Key beatmaps could be generated using HFC and SF, the gameplay quality

of the generated beatmaps was far too low.

44

4.2.4 Case Study: U1 overground - Dopamine

Dopamine is a chaotic song with a consistent but varying bassline, electronic

vocals and many non-percussive transients. Dopamine was chosen as the second

case study as it is the other extreme when compared to Flower Flag - onset

detection is expected to work poorly on this song except for percussive notes.

Table 7 shows the metrical results for Dopamine using the remaining functions.

Function Fidelity Density Detail Precision

Single Function
HFC Average Average High Low
PD Poor Average n/a Low
SD Very Poor Poor n/a Low
CD Good Good High High
KL Good Good Very High High

MKL Good Very Good Very High High
SF Good Good High High

4-Band Filtered
CD Poor Poor n/a Extremely Low
KL Poor Poor n/a Extremely Low

Table 7: Dopamine Onset Detection Results

HFC: Tested with 0.3 and 0.5 PPT with 0.5 producing better results.

± Many minor details were annotated, as a result many notes were placed in

subjective locations, i.e. many people may disagree with them.

– Unlike before, the PPT had to be increased to reduce the amount of notes

present. When doing so, many notes were still annotated questionably

while many agreeable notes were removed.

– Notes were slightly off-time for most of the song.

– Similar to before, several double detections were generated.

Phase Deviation: Tested with 0.0 and 0.3 PPT with 0.0 producing better

results.

+ Performed better than on Flower Flag, with a larger number of agreeable

notes.

– Overall performance was still very poor.

Spectral Difference: Tested 0.3 and 0.5 PPT with 0.3 producing better

results.

– Similar to Flower Flag, generated gameplay was very poor.

45

Complex Domain: Tested with 0.2 and 0.3 PPT with varying results.

+ Finer details were annotated when putting the PPT down to 0.2 rather

than 0.3.

± Similar to HFC, many details were annotated with notes placed in

subjective locations.

– A number of notes were slightly out of time.

– A large number of double detections were present.

Kullback Liebler: Tested with 0.3 and 0.4 PPT with 0.4 producing better

results.

+ Similar to before, results are very good overall.

– Similar to before, a few short bursts of far too many notes were present.

Changing to 0.4 PPT minimized these bursts without compromising

quality elsewhere.

Modified Kullback Liebler: Tested with 0.1 and 0.0 PPT with 0.1

producing better results.

+ Produced very good overall results, better than on Flower Flag.

Spectral Flux: Tested with 0.5 and 0.6 PPT with 0.6 producing better

results. Spectral flux performed very similarly to it’s performance on Flower

Flag compared to other functions.

4-Band Filtered Functions: Tested with PPTs: CD 0.6 KL 1.0; Min-IOI

of 62ms was used to prevent excessive detections.

– Neither function tested produced a reasonable beatmap.

– The accuracy of 4-Band mode was exceptionally poor for Dopamine.

4.2.5 Discussion

• The metrics used to evaluate beatmaps are relative. For example, very

good overall metrics for HFC on Flower Flag does not mean that the

beatmap would be considered high enough quality for use as a beatmap in

rhythm games. It simply means that output can be considered very good

compared to other generated beatmaps and high quality enough to be used

to aid in the beatmapping process.

• The best beatmap produced for each song is high enough quality to be used

as a starting point by beatmappers in the beatmap creation process for

rhythm games. An implication of this is that notes annotated by onset

46

detection are reliable enough to be used as suggested note locations for any

games seeking to synchronize game elements with music.

• The best beatmap for Flower Flag was produced using the HFC function

with 0.2 or 0.3 peak picking threshold.

• The best beatmap for Dopamine was produced using the MKL function

with 0.1 peak picking threshold.

• The best beatmap produced for both songs was created using hop size 128

and window size 512.

• For both songs, a large amount of events in the music were not recognized

as notes. The large majority of these were continuous sounds (in the signal

they appear as steady state transients) which cannot be reduced by an

onset detection function since they are not indicated by onsets, so they

cannot be localized to a single point in time. Many games have gameplay

objects that can be placed to describe these sounds, e.g. sliders in osu!

(2007) or freeze arrows in Dance Dance Revolution (1998). As such, the

beatmap generation process can be improved by exploring methods of

annotating these sounds.

• Recommendations for what functions to use for Single mode generation on

different types of music can be inferred from the case studies. The

functions are listed below sorted by order of recommendation:

– SF performed the best on average. This function is recommended as a

good default choice.

– HFC can be recommended for music where percussion is present and

as a good choice in general. HFC produced average results on

Dopamine, a song which is considered a poor match for the function.

– KL performed the second best on average considering that it

produced good results on both songs.

– MKL performed only average on Flower Flag but very good on

Dopamine. The behaviour of MKL is different from all other functions

evaluated. As such it is recommended when the above functions fail to

produce good results.

– CD under-performed the above functions in general. This function is

therefore not recommended.

47

– PD is overall a very poor function applied to complex mixtures,

however it can be used as an attempt to detect pitched non-percussive

notes where other functions cannot.

– SD is the worst performing function overall. It is not recommended

for game content generation.

• 4-Band filtering mode could be used to produce reasonable beatmaps for

Flower Flag but produced very poor beatmaps for Dopamine. Only CD and

KL can be recommended when attempting to generate Four Key beatmaps.

• From the results of 4-Band filtering it seems that filtering is an ineffective

way to categorize notes or obtain note frequency information. Filtering the

source signal into several reduced signals had unintended side effects on

many of the onset functions, causing them to be less effective or completely

unusable. Better results may be possible with different filters or tweaked

parameters. An alternative method of attempting to obtain frequency

information about notes is to perform pitch detection on detected onsets.

• The preferred hop size and window size for tempo estimation is different

from onset detection. This was unforeseen while developing RhythMIR and

as a result the same hop size must be used, which also limits the choice of

window size. Decoupling tempo estimation from onset detection should be

done regardless of this point anyway since tempo estimation only needs to

be performed once per song while onset detection must be performed any

time a beatmap is generated.

48

5 Conclusion

The aim of the project was to explore how Music Information Retrieval (MIR)

techniques could be used to assist in content creation for music video games. An

application was developed which can perform four tasks via MIR:

• Tempo estimation with an average error of +0.11 BPM on the tested data

set. This accuracy can be improved by offsetting results using average

percentage error of +0.054%.

• First beat offset detection which proved to be unsuccessful.

• Note generation using onset detection to suggest positions to place game

elements. Beatmaps generated using note generation were subjectively

evaluated as good enough to assist in game content creation.

• Note generation using filtering to attempt detection of onsets occurring

concurrently in a song and to categorize the generated notes by frequency.

Filtering proved to be ineffective overall.

The developed system shows how Music Information Retrieval techniques can be

used effectively to assist in content creation for music video games. Results

produced by tempo estimation and non-filtered note generation are considered

good enough to be used in the content generation process of rhythm games - the

strictest genre of music video games quality-wise.

5.1 Future Work

Potential improvements to the developed system can be split into two main

categories: direct improvements to the application and techniques to explore for

improving content generation.

5.1.1 Application Features

Several improvements can be made to the developed application to ease the

beatmap generation process:

• Note density graphs could be implemented to judge if the number of notes

output by generation is reasonable before testing.

• Tempo estimation and onset detection are currently coupled while their

optimal parameters differ. Tempo estimation only needs to be performed

once per song so it should be performed separately.

49

• Having to manually check beatmaps for quality after generation took up a

large portion of time while testing results.

• Since tempo estimation should be performed prior to beatmap generation

anyway, a real time edit mode could be implemented where note

suggestions are generated and selected by the user in real time. This would

also allow changing detection functions on the fly so that the optimal

function can be used for every section of a song.

5.1.2 Content Generation

Results could likely be improved by using superior performing functions such as

the Neural Network function discussed in section 2.2.3.

The content generation system could potentially be improved by researching

more advanced Music Information Retrieval techniques. Onset detection is one of

the most basic forms of determining where to place notes. Notes produced by

onset detections are limited to being recognized from onsets present in music. As

a result, sounds that do produce distinct onsets such, e.g. non-percussive sounds

in general, are mostly undetected. Note transcription methods that track event

duration and pitch can potentially be used to detect these sounds. Pitch

detection could also be used to categorize notes by their frequency rather than

the filtering method attempted.

A different approach to note generation could take advantage of the subjective

annotations done by human beatmappers. The neural network function discussed

in section 2.2.3 could potentially be trained on beatmaps from rhythm games

such as osu! (2007) rather than objectively correct data sets to learn the

beatmapping styles of individual beatmappers.

50

References

Arentz, W. 2001. Beat Extraction From Digital Music. Available from:

http://www.ux.uis.no/norsig/norsig2001/Papers/44.Beat_

Extract_31820017132.ps [Accessed 10th March 2016].

aubio. 2015. (Version 0.4.2). [software library]. Brossier, P.M. Available from:

http://aubio.org/ [Accessed 22nd February 2016].

Audiosurf. 2008. [computer game]. Windows PC. Fitterer, D.

Beat Hazard. 2011. [computer game]. Windows PC, PlayStation 3, iOS. Cold

Beam Games.

Beatmania. 1997. [computer game]. Arcade. Konami. G.M.D.

Bello, J.P. and Sandler, M.B. 2003. Phase-based note onset detection for music

signals. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP ’03). Hong-Kong. April 6-10. pp.441-444.

[online]. Available from: doi: 10.1109/ICASSP.2003.1200001 [Accessed 19th

April 2016].

Bello, J.P. et al. 2004. On the Use of Phase and Energy for Musical Onset

Detection in the Complex Domain. In: IEEE Signal Processing Letters. 11(6):

pp.553-556. [online]. Available from: http://www.eecs.qmul.ac.uk/

former/people/jbc/Documents/Bello-SPL-2004.pdf [Accessed 21st

March 2016].

Bello, J.P. et al. 2005. A Tutorial on Onset Detection in Music Signals. In:

IEEE Transaction on Speech and Audio Processing. 13(5): pp.1035-1047.

[online]. Available from: http://www.nyu.edu/classes/bello/MIR_

files/2005_BelloEtAl_IEEE_TSALP.pdf [Accessed 10th March 2016].

Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H. and Klapuri, A. 2012.

Automatic Music Transcription: Breaking the Glass Ceiling. In: 13th

International Society For Music Information Retrieval (ISMIR) Conference.

Porto, Portugal. October 8-12. pp.379-384. [online]. Available from:

http://ismir2012.ismir.net/event/papers/379_ISMIR_2012.pdf

[Accessed 17th March 2016].

51

http://www.ux.uis.no/norsig/norsig2001/Papers/44.Beat_Extract_31820017132.ps
http://www.ux.uis.no/norsig/norsig2001/Papers/44.Beat_Extract_31820017132.ps
http://aubio.org/
http://www.eecs.qmul.ac.uk/former/people/jbc/Documents/Bello-SPL-2004.pdf
http://www.eecs.qmul.ac.uk/former/people/jbc/Documents/Bello-SPL-2004.pdf
http://www.nyu.edu/classes/bello/MIR_files/2005_BelloEtAl_IEEE_TSALP.pdf
http://www.nyu.edu/classes/bello/MIR_files/2005_BelloEtAl_IEEE_TSALP.pdf
http://ismir2012.ismir.net/event/papers/379_ISMIR_2012.pdf

Böck, S., Arzt, A., Krebs, F. and Schedl, M. 2012. Online Real-Time Onset

Detection with Recurrent Neural Networks. In: Proceedings of the 15th

International Conference on Digital Audio Effects (DAFx-12). York, UK.

September 17-21. [online]. Available from: http:

//www.cp.jku.at/research/papers/Boeck_etal_DAFx_2012.pdf

[Accessed 15th April 2016].

Böck, S., Krebs, F. and Schedl, M. 2012. Evaluating the Online Capabilities of

Onset Detection Methods. In: Proceedings of the 13th International Society For

Music Information Retrieval (ISMIR) Conference. Porto, Portugal. October

8-12. [online]. Available from: http:

//www.cp.jku.at/research/papers/Boeck_etal_ISMIR_2012.pdf

[Accessed 18th March 2016].

Böck, S. and Widmer, G. 2013. Maximum Filter Vibrato Supression for Onset

Detection. In: Proceedings of the 16th International Conference on Digital Audio

Effects (DAFx-13). Maynooth, Ireland. September 2-6. [online]. Available from:

http://phenicx.upf.edu/system/files/publications/Boeck_

DAFx-13.pdf [Accessed 14th April 2016].

Böck, S. Krebs, F. and Widmer, G. 2015. Accurate Tempo Estimation based on

Recurrent Neural Networks and Resonating Comb Filters. In: Proceedings of the

16th International Society For Music Information Retrieval (ISMIR) Conference.

Málaga, Spain. October 26-30. pp.625-629. [online]. Available from:

http://ismir2015.uma.es/articles/196_Paper.pdf [Accessed 23rd

March 2016].

Boost. 2016. (Version 1.6.0). [software library]. Available from:

http://www.boost.org/ [Accessed 1st April 2016].

Brossier, P.M. 2007. Automatic Annotation of Musical Audio for Interactive

Applications. PhD thesis. Centre for Digital Music, Queen Mary University of

London.

Carter, J. 2003. THE FREQUENCY SPECTRUM, INSTRUMENT RANGES,

AND EQ TIPS. [online image]. Available from:

http://www.guitarbuilding.org/wp-content/uploads/2014/06/

Instrument-Sound-EQ-Chart.pdf [Accessed 13th April 2016].

52

http://www.cp.jku.at/research/papers/Boeck_etal_DAFx_2012.pdf
http://www.cp.jku.at/research/papers/Boeck_etal_DAFx_2012.pdf
http://www.cp.jku.at/research/papers/Boeck_etal_ISMIR_2012.pdf
http://www.cp.jku.at/research/papers/Boeck_etal_ISMIR_2012.pdf
http://phenicx.upf.edu/system/files/publications/Boeck_DAFx-13.pdf
http://phenicx.upf.edu/system/files/publications/Boeck_DAFx-13.pdf
http://ismir2015.uma.es/articles/196_Paper.pdf
http://www.boost.org/
http://www.guitarbuilding.org/wp-content/uploads/2014/06/Instrument-Sound-EQ-Chart.pdf
http://www.guitarbuilding.org/wp-content/uploads/2014/06/Instrument-Sound-EQ-Chart.pdf

Crypt of the NecroDancer. 2015. [computer game]. Windows PC, Mac OS,

Linux, PlayStation 4, PlayStation Vita. Brace Yourself Games.

Dance Dance Revolution. 1998. [computer game]. Arcade. Konami.

dear imgui. 2016. (Version 1.4.8). [software library]. Cornut, O. Available from:

https://github.com/ocornut/imgui [Accessed 4th March 2016].

Dixon, S. 2006. Onset detection revisited. In: Proceedings Of The 9th

International Conference On Digital Audio Effects. Montreal, Canada.

September 18-20. pp.133–137. [online]. Available from:

http://www.dafx.ca/proceedings/papers/p_133.pdf [Accessed 18th

March 2016].

DSP Filters. 2012. (Commit 6f2c1e3 November 2012). [software library]. Falco,

V. Available from: https://github.com/vinniefalco/DSPFilters

[Accessed 12th April 2016].

Dudas, R and Lippe, C. 2006. Diagram of the Short Term Fourier Transform

(STFT). [online image]. Available from: http://www.richarddudas.com/

publications/2006-cycling-dudas-lippe-pvoc/ [Accessed 18th

April 2016].

Duxbury, C., Bello, J.P., Davies, M. and Sandler, M. 2003. Complex domain

onset detection for musical signals. In: Proceedings of the Digital Audio Effects

Conference (DAFx-03). London, UK. September 8-11. pp.90-93. [online].

Available from: http://www.eecs.qmul.ac.uk/legacy/dafx03/

proceedings/pdfs/dafx81.pdf [Accessed 19th April 2016].

Eyben, F., Böck, S., Schuller, B. 2010. Universal Onset Detection with

Bidirectional Long Short-Term Memory Neural Networks. In: Proceedings of the

11th International Society For Music Information Retrieval (ISMIR) Conference.

Utrecht, Netherlands. August 9-13. pp.589-594. [online]. Available from:

http://ismir2010.ismir.net/proceedings/ismir2010-101.pdf

[Accessed 15th April 2016].

Foote, J. 1999. Visualizing Music and Audio using Self-Similarity. In:

Proceedings Of The Seventh ACM International Conference On Multimedia (Part

53

https://github.com/ocornut/imgui
http://www.dafx.ca/proceedings/papers/p_133.pdf
https://github.com/vinniefalco/DSPFilters
http://www.richarddudas.com/publications/2006-cycling-dudas-lippe-pvoc/
http://www.richarddudas.com/publications/2006-cycling-dudas-lippe-pvoc/
http://www.eecs.qmul.ac.uk/legacy/dafx03/proceedings/pdfs/dafx81.pdf
http://www.eecs.qmul.ac.uk/legacy/dafx03/proceedings/pdfs/dafx81.pdf
http://ismir2010.ismir.net/proceedings/ismir2010-101.pdf

1). Orlando, Florida, USA. October 30-November 5. pp.77-80. [online].

Available from: http://www.musanim.com/wavalign/foote.pdf

[Accessed 17th March 2016].

Foote, J. 2000. Automatic Audio Segmentation Using A Measure of Audio

Novelty. In: Proceedings of IEEE Int. Conf. Multimedia and Expo (ICME2000).

New York, NY. July 30-August 2. pp.452–455. [online]. Available from:

https://www.fxpal.com/publications/

automatic-audio-segmentation-using-a-measure-of-audio-novelty.

pdf [Accessed 20th March 2016].

Foote, J. and Uchihashi, S. 2001. The beat spectrum: A new approach to

rhythm analysis. In: IEEE International Conference on Multimedia and Expo.

Tokyo, August 22-25. pp.881-884. [online]. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

93.8485&rep=rep1&type=pdf [Accessed 10th March 2016].

Guitar Hero. 2005. [computer game]. PlayStation 2. Harmonix.

Hainsworth, S. and Macleod, M. 2003. Onset detection in music audio signals.

In: Proceedings of the International Computer Music Conference (ICMC).

Singapore. [online]. Available from:

http://quod.lib.umich.edu/i/icmc/bbp2372.2003.047/1

[Accessed 19th April 2016].

Huron, D. 2001. What is a Musical Feature? Forte’s Analysis of Brahms’s Opus

51, No. 1, Revisited. The Online Journal of the Society for Music Theory. 7(4).

[online]. Available from: http:

//www.mtosmt.org/issues/mto.01.7.4/mto.01.7.4.huron.html

[Accessed 10th March 2016].

Masri, P. 1996. Computer Modeling of Sound for Transformation and Synthesis

of Musical Signals. PhD thesis. University of Bristol, UK.

MIREX. 2005. Audio Onset Detection Results. [online]. Available from:

http://www.music-ir.org/mirex/wiki/2005:

Audio_Onset_Detection_Results [Accessed 30th April 2016].

MIREX. 2006. Audio Onset Detection Results. [online]. Available from:

54

http://www.musanim.com/wavalign/foote.pdf
https://www.fxpal.com/publications/automatic-audio-segmentation-using-a-measure-of-audio-novelty.pdf
https://www.fxpal.com/publications/automatic-audio-segmentation-using-a-measure-of-audio-novelty.pdf
https://www.fxpal.com/publications/automatic-audio-segmentation-using-a-measure-of-audio-novelty.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8485&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.8485&rep=rep1&type=pdf
http://quod.lib.umich.edu/i/icmc/bbp2372.2003.047/1
http://www.mtosmt.org/issues/mto.01.7.4/mto.01.7.4.huron.html
http://www.mtosmt.org/issues/mto.01.7.4/mto.01.7.4.huron.html
http://www.music-ir.org/mirex/wiki/2005:Audio_Onset_Detection_Results
http://www.music-ir.org/mirex/wiki/2005:Audio_Onset_Detection_Results

http://www.music-ir.org/mirex/wiki/2006:

Audio_Onset_Detection_Results [Accessed 30th April 2016].

MIREX. 2015. Audio Onset Detection Results per Class. [online]. Available

from: http://nema.lis.illinois.edu/nema_out/mirex2015/

results/aod/resultsperclass.html [Accessed 14th April 2016].

MIREX. 2015. Audio Tempo Extraction Results. [online]. Available from:

http://nema.lis.illinois.edu/nema_out/mirex2015/results/

ate/summary.html [Accessed 23rd March 2016].

MIREX. 2016. [online]. Available from:

http://www.music-ir.org/mirex/wiki/MIREX_HOME [Accessed 23rd

March 2016].

SFML. 2015. (Version 2.3.2). [software library]. Gomila, L. Available from:

http://www.sfml-dev.org/ [Accessed 21st February 2016].

Soundodger+. 2013. [computer game]. Windows PC. Studio Bean.

O’Keeffe, K. 2003. Dancing Monkeys. [online]. Available from:

http://monket.net/dancing-monkeys/ [Accessed 10th March 2016].

osu!. 2007. [computer game]. Windows PC, Mac OS. Dean Herbert.

osu!wiki. 2016. Beatmapping. [online]. Available from:

https://osu.ppy.sh/wiki/Beatmapping [Accessed 8th March 2016].

RapidXML. 2009. (Version 1.13). [software library]. Kalicinski, M. Available

from: http://rapidxml.sourceforge.net/ [Accessed 31st March 2016].

Yane, U. 1998. BMS Format Specification. [online]. Available from:

http://bm98.yaneu.com/bm98/bmsformat.html [Accessed 8th March

2016]

Zapata, J. and Gómez, E. 2011. Comparative Evaluation and Combination of

Audio Tempo Estimation Approaches. In: AES 42nd Conference on Semantic

Audio. Ilmenau, Germany. July 22-24. [online]. Available from:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

55

http://www.music-ir.org/mirex/wiki/2006:Audio_Onset_Detection_Results
http://www.music-ir.org/mirex/wiki/2006:Audio_Onset_Detection_Results
http://nema.lis.illinois.edu/nema_out/mirex2015/results/aod/resultsperclass.html
http://nema.lis.illinois.edu/nema_out/mirex2015/results/aod/resultsperclass.html
http://nema.lis.illinois.edu/nema_out/mirex2015/results/ate/summary.html
http://nema.lis.illinois.edu/nema_out/mirex2015/results/ate/summary.html
http://www.music-ir.org/mirex/wiki/MIREX_HOME
http://www.sfml-dev.org/
http://monket.net/dancing-monkeys/
https://osu.ppy.sh/wiki/Beatmapping
http://rapidxml.sourceforge.net/
http://bm98.yaneu.com/bm98/bmsformat.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.354.83&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.354.83&rep=rep1&type=pdf

354.83&rep=rep1&type=pdf [Accessed 23rd March 2016].

Bibliography

Dixon, S. 2006. Simple Spectrum-Based Onset Detection. [online] Available

from: http://www.music-ir.org/evaluation/MIREX/2006_

abstracts/OD_dixon.pdf [Accessed 18th March 2016].

Hess, A. 2011. Beat Detection for Automated Music Transcription: An

exploration of Onset Detection Algorithms. [online]. Available from:

http://bingweb.binghamton.edu/˜ahess2/Onset_Detection_

Nov302011.pdf [Accessed 10th March 2016].

Scheirer, E.D. 1997. Tempo and beat analysis of acoustic musical signals.

[online]. Available from: http://www.iro.umontreal.ca/˜pift6080/

H09/documents/papers/scheirer_jasa.pdf [Accessed 18th March

2016].

56

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.354.83&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.354.83&rep=rep1&type=pdf
http://www.music-ir.org/evaluation/MIREX/2006_abstracts/OD_dixon.pdf
http://www.music-ir.org/evaluation/MIREX/2006_abstracts/OD_dixon.pdf
http://bingweb.binghamton.edu/~ahess2/Onset_Detection_Nov302011.pdf
http://bingweb.binghamton.edu/~ahess2/Onset_Detection_Nov302011.pdf
http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/scheirer_jasa.pdf
http://www.iro.umontreal.ca/~pift6080/H09/documents/papers/scheirer_jasa.pdf

Appendices

A Music Files and Beatmaps Used

Explicit permission to use files was obtained from Akira Complex, Camellia,

Feint and FELT. The purposes the music is used for all fall under fair use - since

files are only used for research analysis and are not distributed or commercialized

in any way - so music from other artists is also used. Further details can be

found on each songs beatmap page (source) including the reference BPM for each

song. To view the reference offset the beatmap must be opened in edit mode

inside osu!.

Artist Title Beatmapper Source

Akira Complex Odyssey (Au5
Remix)

ProfessionalBox https://osu.ppy.sh/b/754143

Camellia δ:for the DELTA Naitoshi https://osu.ppy.sh/b/817623

Camellia & DJ
Genki

Feelin Sky eLy https://osu.ppy.sh/b/709939

DragonForce Cry Thunder Jenny https://osu.ppy.sh/b/704360

DystopiaGround AugoEidEs Raikozen https://osu.ppy.sh/b/764082

FELT Flower Flag (MZC
Echoes the Spring
Liquid Mix)

Frostmourne https://osu.ppy.sh/b/169450

Halozy Genryuu Kaiko Hollow Wings https://osu.ppy.sh/b/433005

penoreri Everlasting
Message

Azer https://osu.ppy.sh/b/677938

TwoThirds &
Feint

Epiphany (feat.
Veela)

Aiceo https://osu.ppy.sh/b/687303

U1 overground Dopamine fanzhen0019 https://osu.ppy.sh/b/494818

UNDEAD
CORPORATION

Everything will
freeze

Ekoro https://osu.ppy.sh/b/555797

USAO Chrono Diver
-PENDULUMs-

Skystar https://osu.ppy.sh/b/925161

xi Blue Zenith Asphyxia https://osu.ppy.sh/b/658127

xi FREEDOM DiVE Nakagawa-Kanon https://osu.ppy.sh/b/129891

57

https://osu.ppy.sh/b/754143
https://osu.ppy.sh/b/817623
https://osu.ppy.sh/b/709939
https://osu.ppy.sh/b/704360
https://osu.ppy.sh/b/764082
https://osu.ppy.sh/b/169450
https://osu.ppy.sh/b/433005
https://osu.ppy.sh/b/677938
https://osu.ppy.sh/b/687303
https://osu.ppy.sh/b/494818
https://osu.ppy.sh/b/555797
https://osu.ppy.sh/b/925161
https://osu.ppy.sh/b/658127
https://osu.ppy.sh/b/129891

	Abstract
	List of Figures
	List of Tables
	Introduction
	Beatmaps
	Aims and Objectives

	Background and Literature Review
	Music Information Retrieval
	Musical Features
	Audio Signal Analysis

	Onset Detection
	Onset Types
	Preprocessing
	Detection Functions
	Peak-Picking

	Tempo Estimation
	Existing Tools
	Research Conclusion

	Methodology
	Beatmap Generation
	Setup
	Processing
	Tempo Estimation
	Onset Function Training
	Onset Function Filtering

	Filesystem
	Song List
	Beatmap List
	Beatmaps

	Application
	Menu State
	Game State

	Windows, Graphics, GUI and Audio Playback
	Library Dependencies

	Results and Discussion
	Tempo Estimation
	Parameter Selection
	Aggregate Results
	Discussion

	Note Generation using Onset Detection
	Objective Analysis and Parameter Selection
	Evaluation Metrics
	Case Study: FELT - Flower Flag (MZC Echoes the Spring Liquid Mix)
	Case Study: U1 overground - Dopamine
	Discussion

	Conclusion
	Future Work
	Application Features
	Content Generation

	Appendices
	Music Files and Beatmaps Used

